
Lecture 5 of TDA384/DIT391

Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider

Chalmers University of Technology | University of Gothenburg

Monitors

• Monitors

• Signaling disciplines

• Implementing monitors

• Monitors in Java

• Monitors: dos and don’ts

Today's menu

1

• Monitors
• Common patterns of synchronization

• Language constructs solving synchronization

• Implementing monitors
• Issues and problems

• In depth understanding

• Choice of right constructs

• Monitors in Java
• Language constructs solving synchronization

Today's menu

2

Semaphores provide a powerful, concise mechanism for synchronization and
mutual exclusion

Unfortunately, they have several shortcomings:

• they are intrinsically global and unstructured: it is difficult to understand
their behavior by looking at a single piece of code

• they are prone to deadlocks or other incorrect behavior: it is easy to forget
to add a single, crucial call to up or down

• they do not support well different conditions

• In summary semaphores are a low-level synchronization primitive

• We will raise the level of abstraction

Beyond semaphores

3

Monitors

4

A monitor is an object instantiating a monitor class that encapsulates
synchronization mechanisms:

• attributes are shared variables, which all threads running on the monitor
can see and modify

• methods define critical sections, with the built-in guarantee that at most
one thread is active on a monitor at any time

Monitors

Monitors provide a structured synchronization mechanism built on top of object-
oriented constructs – especially the notions of class, object, and encapsulation

In a monitor class:

• attributes are private

• methods execute in mutual exclusion

5

Threads trying to access a monitor queue for entry; as soon as the active thread leaves
the monitor the next thread in the entry queue gets exclusive access to the monitor

Monitors: entry queue

u

v

7

We declare monitor classes by adding the pseudo-code keyword to monitor

regular Java classes

Note that monitor is not a valid Java keyword – that is why we highlight it in a
different color – but we will use it to simplify the presentation of monitors

• Turning a pseudo-code monitor class into a proper Java class is straightforward:

• mark all attributes as private

• add locking to all public methods

Details on how to implement monitors in Java are presented later

Reminder: We also annotate monitor classes with invariants using the pseudo-
code keyword invariant: not a valid Java keyword

Monitors in pseudo-code

8

A shared counter that is free from race conditions:

The implementation of monitors guarantees that multiple threads executing
increment and decrement run in mutual exclusion

Counter monitor

monitor class Counter {

int count = 0; // attribute, implicitly private

public void increment() { // method, implicitly atomic

count = count + 1;

}

public void decrement() { // method, implicitly atomic

count = count - 1;

}

}

9

Mutual exclusion for n threads accessing their critical sections is straightforward to

achieve using monitors: every monitor method executes uninterruptibly because at

most one thread is running on a monitor at any time

• A proper monitor implementation also guarantees starvation freedom

Mutual exclusion for n threads

monitor class CriticalSection {

T1 a1; T2 a2; ... // shared data

public void critical1() {

// t$_1$'s critical section

}

// ...

public void criticaln() {

// t$_n$'s critical section

}

}

10

For synchronization patterns more complex than mutual exclusion, monitors provide
condition variables

A condition variable is an instance of a class with interface:

A monitor class can declare condition variables as attributes (private, thus only callable
by methods of the monitor)

Every condition variable c includes a FIFO queue blocked:
• c.wait() blocks the running thread, appends it to blocked, and releases the lock on the monitor
• c.signal() removes one thread from blocked (if it’s not empty) and unblocks it
• c.isEmpty() returns true iff blocked is empty

Condition variables

interface Condition {

void wait(); // block until signal

void signal(); // signal to unblock

boolean isEmpty(); // is no thread waiting on this condition?

}

11

Every condition variable c includes a FIFO queue blocked:
• c.wait() blocks the running thread, appends it to blocked, and releases the lock on

the monitor

• c.signal() removes one thread from blocked (if it’s not empty) and unblocks it

Condition variables

u

v

t

13

Producer-consumer problem: recap

interface Buffer<T> {

// add item to buffer; block if full

void put(T item);

// remove item from buffer; block if empty

T get();

// number of items in buffer

int count();

}

Producer-consumer problem: implement Buffer such that:

• producers and consumers access the buffer in mutual exclusion

• consumers block when the buffer is empty

• producers block when the buffer is full (bounded buffer variant)

14

An implementation of producer-consumer with an unbounded buffer using
monitors.

monitor class MonitorBuffer<T> implements Buffer<T> {

Collection storage = ...; // any collection (list, set, ...)

Condition notEmpty = new Condition(); // signal when not empty

public void put(T item) {

storage.add(item) // store item

notEmpty.signal(); // signal buffer not empty

}

public T get() {

if (storage.count() == 0)

notEmpty.wait(); // wait until buffer not empty

return storage.remove(); // retrieve item

}

invariant { #storage.add == #notEmpty.signal }

}

Producer-consumer with monitors: unbounded buffer

No effect if there are no waiting consumers

Get in queue waiting for an item

16

Number of added
elements to buffer
equals number of
signaling

Producer-consumer with a bounded buffer (capacity is the maximum size)
uses two condition variables

monitor class BoundedMonitorBuffer<T> extends MonitorBuffer<T> {

Condition notFull = new Condition(); // signal when not full

public void put(T item) {

if (storage.count() == capacity)

notFull.wait(); // wait until buffer not full

super.put(item); // do as in MonitorBuffer.put(item)

}

public T get() {

T item = super.get(); // do as in MonitorBuffer.get()

notFull.signal() // signal buffer not full

return item;

}

}

Producer-consumer with monitors: bounded buffer

18

Signaling disciplines

19

When a thread s calls signal() on a condition variable, it is executing inside the
monitor

Since no more than one thread may be active on a monitor at any time, the
thread u unblocked by s cannot enter the monitor immediately

Signaling disciplines

Two main choices of signaling discipline:

signal and continue: s continues executing;
u is moved to the entry queue of the monitor

signal and wait: s is moved to the entry queue of the monitor
u resumes executing (it silently gets the monitor’s lock)

The signaling discipline determines what happens to a signaling thread s
after it unblocks another thread u by signaling

20

Under the signal and continue discipline:

• the unblocked thread u is moved to the monitor’s entry queue

• the signaling thread s continues executing

Signal and continue

s u

executing

executing

t

22

Under the signal and wait discipline:

• the signaling thread s is moved to the monitor’s entry queue

• the unblocked thread u resumes executing

Signal and wait

s

t s

u

24

Under the signal and wait discipline, it is guaranteed that the signaled condition holds when
the unblocked thread resumes execution – because it immediately follows the signal

In contrast, under the signal and continue discipline, the signaled condition may no longer
hold when the unblocked thread u resumes execution – because the signaling thread, or
other threads, may change the state while continuing

• Correspondingly, there are different patterns for waiting on a condition variable signaled as
if (!buffer.isEmpty()) isNotEmpty.signal():

Condition checking under different signaling disciplines

Signal and wait:

// check once

if (buffer.isEmpty())

isNotEmpty.wait();

// here !buffer.isEmpty()

Signal and continue:

// recheck after waiting

while (buffer.isEmpty())

isNotEmpty.wait();

// here !buffer.isEmpty()

25

The signal and continue discipline does not guarantee that a thread resuming
execution after a wait will find that the condition it has been waiting for is true: the
signal is only a “hint”

• In spite of this shortcoming, most (if not all) implementations of monitors follow the
signal and continue discipline – mainly because it is simpler to implement

Monitors following signal and continue typically also offer a condition-variable
method:

void signalAll(); // unblock all threads blocked on this condition

This tends to be inefficient, because many threads will wake up only to discover the
condition they have been waiting for is still not true, but works correctly with the
waiting pattern using a loop (which is still not as inefficient as busy waiting!)

Signal all

26

Two variants of signal and continue and signal and wait are also sometimes used:

urgent signal and continue: s continues executing;

u is moved to the front of the entry queue of the monitor

signal and urgent wait: s is moved to the front of the entry queue of the monitor;
u resumes executing

To be precise:

• An urgent thread gets ahead of “regular” threads, but may have to queue behind other
urgent threads that are waiting for entry

• This is implemented by adding a urgentEntry queue to the monitor, which has priority
over the “regular” entry queue

More signaling disciplines

The signaling discipline determines what happens to a signaling thread s
after it unblocks another thread u by signaling

27

A signaling discipline defines what happens to three sets of threads:

𝑆: signaling threads

𝑈: unblocked threads

𝐸: threads in the entry queue

Signaling disciplines: Summary

Other combinations are also possible, but most of them do not make much sense in practice

Write 𝑋 > 𝑌 to denote that threads in set 𝑋 have priority over threads in set 𝑌

• Then, different signaling policies can be expressed as:

28

Implementing monitors

29

We give an overview of how to implement monitors using semaphores

• This also rigorously defines the semantics of monitors:
• Every monitor class uses a strong semaphore entry to model the entry queue

• Every monitor method acquires entry upon entry and releases it upon exit

Monitors from semaphores

monitor class Counter {

int x = 0;

public void inc() {

x = x + 1;

}

}

class Counter {

// strong/fair semaphore, initially 1

Semaphore entry = new Semaphore(1, true);

private int x = 0;

public void inc() {

entry.down();

x = x + 1;

entry.up();

}

}
30

abstract class WaitVariable implements Condition {

Queue blocked = new Queue<Thread>(); // queue of blocked threads

// block until signal

public void wait() {

entry.up(); // release monitor lock

blocked.add(running); // enqueue running thread

running.state = BLOCKED; // set state as blocked

}

// is no thread waiting?

public boolean isEmpty() { return blocked.isEmpty(); }

}

Condition variables: Waiting

Reference to running thread

Every condition variable uses a queue blocked of threads waiting on the condition

31

Condition variables: Signal and continue

class SCVariable extends WaitVariable {

// signal to unblock

public void signal() {

if (!blocked.isEmpty()) {

Thread u = blocked.remove(); // u is the unblocked thread

entry.blocked.add(u); // u gets moved to entry queue

// the running, signaling thread continues executing

}

}

}

32

The thread signaling continues its execution

class SWVariable extends WaitVariable {

// signal to unblock

public void signal() {

if (!blocked.isEmpty()) {

entry.blocked.add(running); // the running, signaling thread

// gets moved to entry queue

Thread u = blocked.remove(); // u is the unblocked thread

u.state = READY; // set state as ready to run

running.state = BLOCKED; // set state as blocked

// the unblocked, signaled thread resumes executing

}

}

}

33

Condition variables: Signal and wait

monitor class StrongSemaphore implements Semaphore {

int count;

Condition isPositive = new Condition(); // is count > 0?

public void down() {

if (count > 0)

count = count - 1;

else isPositive.wait();

}

public void up() {

if (isPositive.isEmpty())

count = count + 1;

else isPositive.signal();

}

}

Semaphores from monitors

Each signal matches a wait;
thus no decrement or increment
in the else branches

34

Can we
implement

semaphores using
monitors?

The result that monitors can implement semaphores (and vice versa) is
important theoretically: no expressiveness loss

However, implementing a lower-level mechanism (semaphores) using a higher-
level one (monitors) is impractical because it is likely to be inefficient

• If you have monitors use it (do not implement semaphores)

As usual, if you need monitors or semaphores use the efficient library
implementations available in your programming language of choice

• Do not reinvent the wheel!

Semaphores from monitors: A theoretical result

35

Monitors in Java

37

Java does not include full-fledged monitor classes, but it offers support to
implement monitor classes following some programming patterns

There are two sets of monitor-like primitives in Java:

• language based: has been included since early versions of the Java language

• library based: has been included since Java 1.5

We have seen bits and pieces of both already, since they feature in simpler
synchronization primitives as well

Two kinds of Java monitors

38

class JM {

private int x, y;

public synchronized void p()

{ /* ... */ }

public synchronized int q()

{ /* ... */ }

}

A class JM can implement a monitor class M as follows:

• every attribute in JM is private

• every method in JM is synchronized – which guarantees it executes atomically

Language-based monitors

monitor class M {

int x, y;

public void p()

{ /* ... */ }

public int q()

{ /* ... */ }

}

This mechanism does not guarantee fairness of the entry queue associated with the monitor:
entry may behave like a set

39

Each language-based monitor implicitly include a single condition variable with signal
and continue discipline:

• calling wait() blocks the running thread, waiting for a signal

• calling notify() unblocks any one thread waiting in the monitor

• calling notifyAll() unblocks all the threads waiting in the monitor

Language-based condition variables

monitor class M {

int x; Condition isPos;

public void p()

{ while (x < 0)

isPos.wait(); }

public int q()

{ if (x > 0)

isPos.signal(); }

}

class JM {

private int x;

public synchronized void p()

{ while (x < 0)

wait(); }

public synchronized int q()

{ if (x > 0)

notify(); }

}

It does not guarantee fairness of the blocked threads queue: blocked may behave like a set

40

Calls to wait() always must be inside a loop checking a condition

• There are multiple reasons to do this:

• Under the signal and continue discipline, the signaled condition may be no
longer true when an unblocked thread can run

• Since the blocked queue is not fair, the signaled condition may be “stolen”
by a thread that has been waiting for less time

• Since there is a single implicit condition variable, the signal may represent a
condition other than the one the unblocked thread is waiting for

• In Java (and other languages), spurious wakeups are possible: a waiting
thread may be unblocked even if no thread signaled.

How to wait in a language-based monitor

41

A class LM can implement a monitor class M using explicit locks:
• add a private monitor attribute – a fair lock

• every method in CM starts by locking monitor and ends by unlocking monitor – which guarantees
it executes atomically

Library-based monitors

monitor class M

{

int x, y;

public void p()

{ /* ... */ }

}

class LM {

private final Lock monitor = new ReentrantLock(true); // fair lock

private int x, y;

public void p()

{

monitor.lock();

/* ... */

monitor.unlock();

}

}

This mechanism guarantees fairness of the entry queue associated with the monitor: blocked
behaves like a queue

42

Condition variables with signal and continue discipline can be generated by a
monitor’s lock:

Library-based condition variables

monitor class M {

Condition isXPos

= new Condition();

Condition isYPos

= new Condition();

int x, y;

// ...

}

class JM {

private final Lock monitor

= new ReentrantLock(true);

private final Condition isXPos

= monitor.newCondition();

private final Condition isYPos

= monitor.newCondition();

private int x, y;

// ...

}

43

Each library-based condition variable c has signal and continue discipline:

• calling c.await() blocks the running thread, waiting for a signal

• calling c.signal() unblocks any one thread waiting on c

• calling c.signalAll() unblocks all the threads waiting on c

• When signalAll() is called, the ordering of lock reacquisition is also fair
(same order as in blocked) – provided the lock itself is fair

• These methods must be called while holding the lock used to generate the
condition variable; otherwise, an IllegalMonitorStateException is thrown

This mechanism guarantees fairness of the queue of blocked threads associated
with the condition variable: blocked behaves like a queue

Library-based condition variables (cont'd)

44

Calls to await() always must be inside a loop checking a condition

There are multiple reasons to do this (compare to the case of language-based
monitors):

• Under the signal and continue discipline, the signaled condition may not be
longer true when an unblocked thread can run

• In Java (and other languages), spurious wakeups are possible: a waiting
thread may be unblocked even if no thread signaled

How to wait in a library-based monitor

45

Waiting operations (in monitors as well as in semaphores) may be interrupted
by some low-level code that calls a thread’s interrupt() method

• This is apparent in the signature of the waiting methods, which typically may
throw an object of type InterruptedException: interrupting a waiting
thread wakes up the thread, which has to handle the exception

• We normally ignore the case of interrupted threads, since it belongs to lower-
level programming
• When calling waiting primitives, you typically propagate the exception to the main

method (or simply catch and ignore it)

Threads, interrupted

46

It is important that programs ensure that an interrupted thread still leaves the
system in a consistent state by releasing all locks it holds

• In language-based monitors, an interrupted thread in a synchronized
method automatically releases the monitor’s lock

• In library-based monitors, use a finally block to release the monitor’s
lock in case of exception:

class LM {
private final Lock monitor = new ReentrantLock(true);

public void p() {
monitor.lock();
try { /* ... */ }
finally { monitor.unlock(); }

}
}

Threads, interrupted (cont'd)

47

Monitors: dos and don’ts

48

What happens if a method in monitor M calls a method n in monitor N (with condition
variable cN)? Different rules are possible:

1. Prohibit nested calls
2. Release lock on M before acquiring lock on N
3. Hold lock on M while also locking N

3.1 When waiting on cN release both locks on N and on M
3.2 When waiting on cN release only lock on N

• Rules 3 are prone to deadlock – especially rule 3.2. – because deadlocks often occur
when trying to acquire multiple locks

• Java monitors (both language- and library-based) follow the deadlock-prone rule 3.2
• Rule of thumb: avoid nested monitor calls as much as possible
• Note that if N is the same object as M, nested calls are not a problem (the implicit

locks are reentrant)

Nested monitor calls

49

• Monitors provide a structured approach to concurrent programming, which
builds atop the familiar notions of objects and encapsulation

• This raises the level of abstraction of concurrent programming compared to
semaphores.

• Monitors introduce separation of concerns when programming concurrently:

• mutual exclusion is implicit in the use of monitors,

• condition variables provide a clear means of synchronization.

Monitors: Pros

50

• Monitors generally have a larger performance overhead than semaphores
• Performance must be traded against error proneness

• The different signaling disciplines are a source of confusion, which tarnishes
the clarity of the monitor abstraction. In particular, signal and continue is both
less intuitive (because a condition can change before a waiting thread has a
chance to run on the monitor) and the most commonly implemented discipline

• For complex synchronization patterns, nested monitor calls are another source
of complications

Monitors: Cons

51

52

	Slide 0
	Slide 1: Today's menu
	Slide 2: Today's menu
	Slide 3: Beyond semaphores
	Slide 4: Monitors
	Slide 5: Monitors
	Slide 6: Monitors: entry queue
	Slide 7: Monitors: entry queue
	Slide 8: Monitors in pseudo-code
	Slide 9: Counter monitor
	Slide 10: Mutual exclusion for n threads
	Slide 11: Condition variables
	Slide 12: Condition variables
	Slide 13: Condition variables
	Slide 14: Producer-consumer problem: recap
	Slide 15: Producer-consumer with monitors: unbounded buffer
	Slide 16: Producer-consumer with monitors: unbounded buffer
	Slide 17: Producer-consumer with monitors: bounded buffer
	Slide 18: Producer-consumer with monitors: bounded buffer
	Slide 19: Signaling disciplines
	Slide 20: Signaling disciplines
	Slide 21: Signal and continue
	Slide 22: Signal and continue
	Slide 23: Signal and wait
	Slide 24: Signal and wait
	Slide 25: Condition checking under different signaling disciplines
	Slide 26: Signal all
	Slide 27: More signaling disciplines
	Slide 28: Signaling disciplines: Summary
	Slide 29: Implementing monitors
	Slide 30: Monitors from semaphores
	Slide 31: Condition variables: Waiting
	Slide 32: Condition variables: Signal and continue
	Slide 33: Condition variables: Signal and wait
	Slide 34: Semaphores from monitors
	Slide 35: Semaphores from monitors: A theoretical result
	Slide 36: Quiz Monitors
	Slide 37: Monitors in Java
	Slide 38: Two kinds of Java monitors
	Slide 39: Language-based monitors
	Slide 40: Language-based condition variables
	Slide 41: How to wait in a language-based monitor
	Slide 42: Library-based monitors
	Slide 43: Library-based condition variables
	Slide 44: Library-based condition variables (cont'd)
	Slide 45: How to wait in a library-based monitor
	Slide 46: Threads, interrupted
	Slide 47: Threads, interrupted (cont'd)
	Slide 48: Monitors: dos and don’ts
	Slide 49: Nested monitor calls
	Slide 50: Monitors: Pros
	Slide 51: Monitors: Cons
	Slide 52

